A Geophysical Survey of
Talland Barton Enclosures, Field System and
Hendersick Barrow
Talland
Cornwall

View of Talland Barton Enclosure looking northeast

By
James Lewis and Dr. Catherine Frieman
Southeast Kernow Archaeological Survey
Report No.8
HER Nos. 57386, 57387
57388 & 57390
Contents

0.0 List of Figures

1.0. Introduction
 1.1. Rationale
 1.2. Objectives
 1.2. Site Location

2.0 Archaeological Background

3.0. Methodology
 3.1. Magnetometry Survey
 3.2. Resistivity Survey
 3.3. Lidar Survey

4.0. Results

5.0. Discussion

6.0. Conclusion

7.0. Acknowledgements

8.0. References
0.0 List of Figures

Figure 1. Cropmarks as plotted from the aerial photographs.

Figure 2. The site location.

Figure 3. The results of the magnetometer survey presented in greyscale format.

Figure 4. Anomalies recorded by the magnetometer.

Figure 5. The results of the resistivity survey presented in greyscale format.

Figure 6. Anomalies recorded by the resistivity.

Figure 7. Lidar image showing Talland Barton field.

Figure 8. Anomalies recorded by Lidar.

Figure 9. Interpretation of cropmarks and field boundaries.
1.0 Introduction

A magnetometer and resistivity survey were carried out at Talland Barton Round (NGR SX 2333 5166; HER 57386) and a small undated rectangular enclosure (SX 2341 5142; HER 57388). At the nearby undated enclosure and pits (SX 2327 5159; HER 57387) Talland Bay, Cornwall and at Hendersick Barrow (SX 2396 5196; HER 57390), Hendersick Farm, Portnadler Bay, Cornwall only a magnetometer survey was undertaken.

The magnetometry survey was carried out by Kyle Beavorstock of Thames Valley Archaeological Survey (TVAS), Reading and the resistivity surveys were carried out by Malcolm Wright and Pete Nicholas of the Tamarside Heritage Group. The surveys were conducted under the direction of Dr Catherine Frieman of the Australian National University (ANU), Canberra, and James Lewis. The work took place 23-27 July 2017 with the consent given on behalf of the National Trust, by Mr James Parry, Archaeological Advisor for National Trust and with agreement of Mr John Hutchings, Farmer, Porthallow Farm. The survey was carried out as part of a wider project of the Southeast Kernow Archaeology Survey (SEKAS).
1.1 Rationale
Despite many generations of archaeological fieldwork in Britain’s southwestern peninsula and Cornwall’s central role in later prehistoric exchange networks, the prehistory of the south-eastern part of the county has not been exposed to the same amount of modern archaeological investigation. The SEKAS project aims to develop a better understanding of the prehistoric landscape of this region which links the metal-rich uplands to the English Channel. The study region for the SEKAS project comprises of the area between the Looe and the Fowey rivers and south of the A38, and the period from the Neolithic through to the later Iron Age.

2. Aims and Objectives

2.1. Aims
The investigation has two aims:

1. To investigate the monuments and place them within the wider prehistoric landscape of southeast Cornwall.
2. To undertake the first geophysical surveys on the sites of known or presumed monuments.

2.2. Objectives

1. The geophysical survey will establish the extent and composition of the subsurface remains. These results will be integrated into the County Historic Environment Record and presented to the National Trust to aid in future management of the monument.
2. The survey will record how the Round, field system and barrow relate to other landscape features, such as upstanding field boundaries, and subsurface features.
3. The results will reveal whether any internal features survive within the round and field system.
4. The results will also be compared to other geophysical surveys carried out on similar sites within the locality.
1.2 Sites locations and descriptions

The sites at Talland Barton and Hendersick Farm is located on the coast between the towns of Polperro and West Looe in the district of Caradon in southeast Cornwall (Fig. 1).

![Map of Talland Barton and Hendersick Farm](https://example.com/map.jpg)

Figure 1: The site location (© Ordnance Survey).

1.2.1. Talland Barton Enclosure (HER. 57386)
The Talland Barton enclosure or ‘round’ is in the parish of Lansallos and is located c.600m east of Talland Bay church and is described as,

“Defined by two widely spaced ditches, the outer most lying 12m outside the inner circuit. The inner enclosure is sub-circular, 43m by 41m in size, with two gaps, possibly entrances, facing north-west and coinciding with a wide gap in the outermost circuit. The outer circuit is straight sided along its eastern edge. The round is associated with a smaller rectilinear enclosure and rectilinear field system which are both described in record 57387”

(Heritage Gateway 2017).

The round was first recorded as a group of cropmarks from aerial photography. The site has extensive views to the south, southeast and southwest. To the west, the coast is visible for c.4km and immediately south and east the slope of the field blocks any view of the nearest coast line. The round is sited in an area of the field with gentle west sloping aspect. Further west and as one moves south the field becomes increasingly steep. Today, the field is used for pasture although it has in the past been used to plant crops including potatoes (J. Hutchings pers comm). Within one kilometre of the enclosure 18 entries are recorded on the Cornwall Historic Environment Record (HER). For the most part, these date to the medieval and post-medieval periods.
Located on the east side of Talland Bay, Talland Barton Round is one of three enclosures situated along the coast between the coastal towns of Fowey and Looe in southeast Cornwall. The other two enclosures are located at Great Lizzen, L Lansallos (HER 57524; SX 1832 5086) and Rapheal, Lansallos (HER 57579; SX 1903 5073). Talland Barton’s location on the coast and directly south of the parish of Pelynt, a parish which contains more Iron Age and Romano-British enclosures and Bronze Age barrows than any other in southeast Cornwall, may have been important. Its coastal position would have presented it with an opportunity to access both inland and coastal resources, including maritime trade; and it may have served as a centre of distribution within the local area.

This landscape has been defined by the Historic Landscape Character Assessment (HLC) as Farmland 20th century (Herring 1998). The soil is mainly acidic and comprises of ‘typical brown earth’ (Soil Survey of England and Wales 1983) and the underlying geology is Whitsand bay formation Slate, Siltstone and Sandstone (BGS 2002). The enclosure lies c.115m OD.

1.2.2. Rectangular Enclosure (HER. 57387)
The rectangular enclosure was first identified as a group of cropmarks visible on aerial photographs. The enclosure is located 50m south of the larger Talland Barton enclosure. The site is described as,

“A rectilinear ditched enclosure and field system of probable prehistoric date…. The enclosure is 45m by 30m in size with large gaps in the northern and southern sides”

(Heritage Gateway 2017).

Although probable, it is not certain if the Talland Barton enclosure and the rectangular enclosure would be contemporary. The underlying geology is Whitsand bay formation Slate, Siltstone and Sandstone (BGS 2002). The enclosure is c.110m OD

1.2.3. Talland Barton, Undated Enclosure and pits (HER. 57388)

As was the case for Talland Barton and the rectangular enclosures, the undated enclosure and pits were identified through aerial photographs.

“A small pit (6.0m across) and ditched features, possibly fragments of rectilinear enclosures, are visible as cropmarks on aerial photographs (p1) to the south-east of Talland Barton. These features lie to the south of the prehistoric enclosures and field system 57386-7”

(Heritage Gateway 2017).

The Cornwall HER records the site as undated, but it is possible the site is contemporary with either one or both other sites within the field. The underlying geology is Whitsand bay formation Slate, Siltstone and Sandstone (BGS 2002). The features are c.100m OD.

1.2.4. Hendersick Barrow (HER. 57390)
The Hendersick Barrow is located c.800m northeast of the Talland Barton enclosure and is described as,

“A sub circular mound, 16m across, is visible as cropmarks on aerial photographs…The feature lies on a slight ridge overlooking the sea and is likely to be a Bronze Age barrow”

Heritage Gateway (2017)

The site lies on a barely perceptible east facing slope and in contrast to the enclosure has good views of the coast eastwards and of Looe island. At present the field is used for pasture but it too in the past has been used to plant crops including potatoes (J. Hutchings pers comm). The Barrow is one of only two isolated barrows recorded along the coast between Polperro and Looe, the other is located as a
cropmark at Brent, Polperro (NGR SX 2167 5119; HER 57372). This coastline contains a paucity of barrows, which stands in comparison to further inland where many isolated barrows and several barrow cemeteries are found.

The site is located on land defined by the Historic Landscape Character Assessment (HLC) as Farmland Medieval, (Herring 1998). The soil is mainly acidic and comprises of ‘typical brown earth’ (Soil Survey of England and Wales 1983) and). The underlying geology is Bovisand formation Sandstone (BGS 2002). The barrow is c.105m OD.
2.0 Archaeological Background
Cornwall’s Historic Environment Record defines Talland Barton as an Iron Age and/or Romano-British round. The monument is thought to have been constructed and used at some point between 400BC to 600AD.

There are approximately 750-1000 enclosures in Cornwall (Henderson 2007: 220). Of these, only 25 have fully published excavation reports and only one, Trethurgy, has been completely excavated (Quinnell 2004). The evidence indicates these sites were used from the Late Iron Age (LIA) c.400 BC-500 AD, with the 2nd and 3rd centuries AD witnessing the most intense period of construction (Quinnell 2004: 212-13).

In his recent study of Iron Age and Romano-British enclosures in the Camel estuary, Young (2012: 101) highlighted the problem of linking typology and chronology. Thomas (1966: 87), for example, labelled small univallate enclosures as rounds. These are small settlements enclosed by a single bank and ditch and usually sited on hill slopes and spurs (Johnson and Rose 1982: 155). Although generally comprising of a single bank and ditch, work at Caervallack, Helston (Edwards and Kirkham 2008), Threemilestone, Truro (Schwieso 1976) and Penhale, Fraddon (Johnston et al. 1998-99) has demonstrated that rounds can also be bivallate and multivallate and this blurs the distinction of rounds from other types of enclosure.

Quinnell (2004: 213) wisely sidesteps the issue of typology and identifies two elements which comprise a round: first, a type of site “under 1 ha in size, ditches with depths of c.2m or less, simple entrances compared to hillforts, oval or almost circular in shape but some rectilinear forms and on hillslopes with the entrances facing downhill”. Using this definition, Talland Barton can certainly be viewed as a round. The second element describes the type of communities which lived in the rounds (Quinnell 2004: 211). These are thought to be small family groups with access to local resources and whose main occupation was farming. This second element, without excavation, is more difficult to assess. There is evidence that some of the round type enclosures were not settlements but used to undertake specialized activities, such as metal working (Lawson-Jones 2009-10). These locations Quinnell (2004: 214) does not consider to be rounds but enclosures, an inconsistency.

Within the wider area, several archaeological investigations have been carried out. In 2012, the authors, in cooperation with the Saltash Heritage Group, carried out a magnetic survey at Mountain Barrows. The aim was to assess the site’s preservation and to determine the location and layout of features of archaeological interest within the area of the monument. About 75% of the site was surveyed, of the ten barrows recorded in the late nineteenth century, eight were identified on the geophysical survey (Frieman and Lewis 2013, forthcoming). Recent geophysical surveys have also been carried out at other Bronze Age sites at Duloe Stone Circle (Nicholas et al 2017) and Ashen Cross Barrows Cemetery, Pelynt, (Lewis and Frieman forthcoming). Further geophysical surveys have been carried out around Pelynt at potential Iron Age Romano-British enclosures at Bake Rings and Hall Rings. These recorded the extant of the enclosures and structural anomalies within them (Lewis and Frieman 2014a & 2015a; Lewis and Frieman 2016).

Approximately 6km northwest at the multivallate hillfort Bury Down, geophysical survey and excavation was carried out by Keith Ray in the 1990s (Ray 1994; 2001). Ray’s geophysical survey revealed evidence of interior features and the segmentation of the outer ditch, interpreted as the remains of a Neolithic causewayed enclosure which, in turn, surrounds the later extant Iron Age enclosure (Ray 2001:55). Stabilisation work was undertaken along the inner bank; however, no excavation was carried out but localised plans and sections were drawn (Preston-Jones 1996). In 2013, a magnetometer survey of the monument was undertaken by the Saltash Heritage Group under the direction of the SEKAS. In contrast to Ray’s survey it found no evidence of internal structures and the outer ditch was continuous suggesting the outer ditch was not a causewayed enclosure (Lewis and Frieman 2016).
Ray also undertook limited geophysical survey and excavation at the enclosure at Barcelona, c.800m east of Ashen Cross cemetery. The survey did not examine the interior of the site, only the outer ditch. Within the outer ditch several small slots were excavated and here a small number of flints were found. Based on this evidence Ray suggested a Neolithic date for the site (Ray 2001).

A Middle to Late Bronze Age enclosure was found during construction work at Liskeard Junior and Infant School. The enclosure ditch was heavily truncated, and it was not possible to identify an associated bank. The monument was dated based upon pottery and charcoal which produced a date range of 1396–840 BC (Jones 1998-99:67). During excavations on St. George’s Island (Looe Island) in 2009, Channel Four’s programme ‘Time Team’ found evidence for a Romano-British enclosure (Wessex Archaeology 2009: 22). Archaeological work at Kingswood, Cardinham, involved both geophysical survey and excavation of two univallate enclosures, one of which was previously unknown. The known site dates to the 4th–3rd centuries BC and the new enclosure, on the basis of a small number of lithics recovered, was provisionally dated to the Neolithic (Borlase 2013: 192).
3.0 Methodology

3.1 Magnetometry Survey
A magnetic survey employed 20 x 20m grids which were sited using an EDM and extended in a north-south direction. A total of 179 grids were surveyed for the magnetic assessment, with the survey covering a total area of 4ha. The survey used a Bartington Grad 601-2 dual sensor fluxgate gradiometer. The zig-zag method was used and readings were taken at 0.25m intervals along traverses 1m apart. This provides 1600 sampling points across a full 20m × 20m grid. The units used were nano-Tesla (nT); and the processed data ranged from a maximum of 10 and a minimum of -10 and produced a standard deviation of 4.16nT.

The magnetometer data was processed using Terra surveyor Lite 3.0.25.1. Once the downloading was completed, the magnetic results were processed; and the data was clipped, de-staggered, de-stripped and the grids were moved (to re-locate the interior) and range matched.

Anomalies detected using the magnetometer are depicted as either negative or positive. The interpretation of the results is based on previous experience of the surveyors and comparison with other sites. The final results are presented in this report in greyscale format.

3.2. Resistivity Survey
The resistivity survey employed 20 x 20m grids which were sited using an EDM and extended in a north-south direction. A total of 17 grids, covering a total area of 0.68ha were surveyed. The survey used a Geoscan RM15 and readings were taken at 1m intervals along traverses 1m apart. This provides 400 sampling points across a full 20m × 20m grid and the total points surveyed were 6800. The data recordings ranged from +225.6-103.1 with a standard deviation of 31.3 (Wright pers comm).

The resistivity data was processed using Geoplot. Once the downloading was completed, the results were processed; and the data was clipped, de-staggered, de-stripped and range matched.

The dark areas denote high resistivity, typically rocky ground and lighter areas are low resistivity, typically clay or wetter ground. The interpretation of the results is based on previous experience of the surveyors and comparison with other sites. The final results are presented in this report in greyscale format.

3.3. Lidar Survey
In addition to the geophysical survey, a LiDAR survey was also carried out. The topographical survey was undertaken using QGIS to interpolate and examine UK Government data at 1m resolution at a vertical exaggeration of 10. The results provide detailed physical record of the sites and the surrounding area and highlight several small anomalies which might be useful for further investigation.
4.0 Results

The anomalies identified at Talland consist of a large bivallate enclosure, a smaller rectangular enclosure and several post-medieval field boundaries and drains as well as a potential pathway. At Hendersick, the barrow and its internal features are distinctly visible.

Figure 3: The result of the magnetometer survey presented in greyscale format.
Figure 4. Anomalies recorded by the magnetometer.

4.1 Archaeological Anomalies

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inner circular anomaly, eastern entrance, 44m diameter.</td>
<td>Inner enclosure ditch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High Archaeological interest</td>
</tr>
<tr>
<td>2</td>
<td>Outer circular anomaly, probable eastern entrance, 72m diameter.</td>
<td>Outer enclosure ditch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High Archaeological interest</td>
</tr>
<tr>
<td>3</td>
<td>Semi-circular anomaly, 24m long. W side of area enclosed by 1.</td>
<td>Ditch within the enclosure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High Archaeological interest</td>
</tr>
<tr>
<td>4</td>
<td>Six small circular anomalies located within 1. Aligned E-W, almost linear, 20M long.</td>
<td>Possible pits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High Archaeological interest</td>
</tr>
<tr>
<td>5</td>
<td>Square anomaly, with northern entrance c.12m by 12m wide.</td>
<td>Rectangular structure, unknown date</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High Archaeological interest</td>
</tr>
<tr>
<td>6</td>
<td>Figure of 8 feature within 5.</td>
<td>An internal feature possibly a hearth, kiln or pit.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High Archaeological interest</td>
</tr>
<tr>
<td>7</td>
<td>NEN-SWS aligned linear anomaly 20m long</td>
<td>Ditch, possibly associated with 5 & 8 (below)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High Archaeological interest</td>
</tr>
<tr>
<td>No.</td>
<td>Description</td>
<td>Significance</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>8</td>
<td>Four small circular anomalies</td>
<td>Pits possibly associated with 5 & 7.</td>
</tr>
<tr>
<td>9</td>
<td>Right angled linear anomaly, extending E-W, then turning 90° N-S and incorporates/truncates the E side of 2. 110m E-W & 30m N-S.</td>
<td>Field boundary, unknown date.</td>
</tr>
<tr>
<td>10</td>
<td>Nine circular anomalies</td>
<td>Possible structure</td>
</tr>
<tr>
<td>11</td>
<td>NNE-SWS irregular linear anomaly, extending from the N edge of the Los (limit of survey). 74m long.</td>
<td>Field boundary, unknown date.</td>
</tr>
<tr>
<td>12</td>
<td>Right angled linear anomaly, extending N-S then turning 90° W. 130m N-S & 40m E-W.</td>
<td>Field boundary, unknown date.</td>
</tr>
<tr>
<td>13</td>
<td>N-S linear anomaly which extends from the northern edge of the Los and appears to be a continuation of 12. 14m long.</td>
<td>Field boundary, unknown date.</td>
</tr>
<tr>
<td>14</td>
<td>Large irregular shaped pit, located c.5m from the western Los. 7m diameter.</td>
<td>Possible quarry pit?</td>
</tr>
<tr>
<td>15</td>
<td>NE-SW linear anomaly, strong signal. At least 80m long.</td>
<td>Field boundary</td>
</tr>
<tr>
<td>16</td>
<td>N-S linear anomaly, which initially runs parallel with 12, is truncated by 15 and aligned with 22. 70m long.</td>
<td>Field boundary</td>
</tr>
<tr>
<td>17</td>
<td>Strong circular signal, truncating 2. 8m diameter.</td>
<td>Quarry Pit</td>
</tr>
<tr>
<td>18</td>
<td>'oval’ shaped positive anomaly, truncating 12 & 13. 10m long by 5m wide.</td>
<td>Pit?</td>
</tr>
<tr>
<td>19</td>
<td>Angled linear anomaly extending from the southern Los, slightly curving N-S alignment, 40m. Then turns NE 30m and continues beyond the Los.</td>
<td>Field boundary, lynchets?</td>
</tr>
<tr>
<td>20</td>
<td>WNW-SES, linear anomaly 16m long.</td>
<td>Field boundary</td>
</tr>
<tr>
<td>21</td>
<td>Angled linear anomaly, aligned NE-SW, then turning 90° NW-SE. c.50m long</td>
<td>Field boundary</td>
</tr>
<tr>
<td>22</td>
<td>NW-SE linear anomaly, appears to be a continuation</td>
<td>Field boundary</td>
</tr>
<tr>
<td>No.</td>
<td>Description</td>
<td>Location/Size</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>16</td>
<td>C.30m long.</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>ENE-WNW linear anomaly. Truncated by 18 and possibly 12. Aligned with 23. c.15m long.</td>
<td>Field boundary</td>
</tr>
<tr>
<td>25</td>
<td>Angled linear anomaly, N-S, turning NW-SE extending beyond the southern Los. c.75m long</td>
<td>Field boundary</td>
</tr>
<tr>
<td>26</td>
<td>Angled linear anomaly, NE-SW then turning NW-SE. Truncates or truncated by 27. c.75m long.</td>
<td>Field boundary</td>
</tr>
<tr>
<td>27</td>
<td>E-W linear anomaly, truncates or truncated by 26. c.75m long.</td>
<td>Field boundary</td>
</tr>
<tr>
<td>28</td>
<td>Pits/postholes forming a possible circular anomaly. c.12m diameter.</td>
<td>Possible structure</td>
</tr>
<tr>
<td>29</td>
<td>Pits/postholes forming a possible structure. c.7m diameter.</td>
<td>Possible structure</td>
</tr>
<tr>
<td>30</td>
<td>NW-SE field drain. 58m long.</td>
<td>Post-median field drain.</td>
</tr>
<tr>
<td>31</td>
<td>Curvilinear line of pits/postholes. c.10m long.</td>
<td>Possible structure</td>
</tr>
<tr>
<td>32</td>
<td>Two strong anomalies. c.5m diameter.</td>
<td>Large pits</td>
</tr>
<tr>
<td>33</td>
<td>Two strong large irregular shaped anomalies. c.10m x 5m.</td>
<td>Large pits/construction waste?</td>
</tr>
<tr>
<td>34</td>
<td>Several irregular shaped anomalies. E of 35.</td>
<td>Pits.</td>
</tr>
<tr>
<td>35</td>
<td>N-S aligned linear anomaly, possible continuation of 19. c.15m long, extends beyond the southern Los.</td>
<td>Field boundary.</td>
</tr>
<tr>
<td>36</td>
<td>Circular anomaly, diameter c.14m.</td>
<td>Barrow ditch</td>
</tr>
<tr>
<td>37</td>
<td>Three small anomalies within 36.</td>
<td>Pits/postholes</td>
</tr>
</tbody>
</table>
4.2. Resistivity Results

Figure 5. The results of the resistivity survey presented in greyscale format.

Figure 6. Anomalies recorded by the resistivity survey.
<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Interpretation</th>
<th>Archaeological interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>Irregular linear feature and two circular anomalies.</td>
<td>Possible structure/or geological disturbance.</td>
<td>High</td>
</tr>
<tr>
<td>39</td>
<td>Linear E-W aligned anomaly. c.23m long.</td>
<td>Possible structure/or geological disturbance.</td>
<td>High</td>
</tr>
<tr>
<td>40</td>
<td>Angled linear feature and two circular anomalies.</td>
<td>Possible structure/or geological disturbance.</td>
<td>High</td>
</tr>
<tr>
<td>41</td>
<td>Six small circular anomalies located close to and around the eastern gap of 1.</td>
<td>Probably rocks/or possibly pits.</td>
<td>Medium-Low</td>
</tr>
</tbody>
</table>

4.1 Lidar Survey

Figure 7. Lidar image showing Talland Barton field.
Figure 8. Anomalies recorded by Lidar.

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>Irregular curvilinear feature, aligned NE-SW.</td>
<td>Field boundary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium-low Archaeological interest</td>
</tr>
<tr>
<td>43</td>
<td>Low mound feature.</td>
<td>Possible natural feature, requires further investigation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium Archaeological interest</td>
</tr>
<tr>
<td>44</td>
<td>Water trough.</td>
<td>Natural spring.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low Archaeological interest</td>
</tr>
</tbody>
</table>
5.0 Discussion of Results

5.1 Introduction

The geophysical surveys identified numerous strong positive responses that have allowed a more accurate picture of the composition and detail of these sites. Almost all of these responses were identified using the magnetometer which was clearly superior in time and the amount of information gathered than the resistivity survey in this case.

The resistivity survey, whilst more time consuming, did however, present another opportunity to target the rectangular enclosure (HER. 57387), the round (1 & 2) and the rectangular structure (5). Unfortunately, the results of the resistivity survey from the rectangular enclosure were very unclear and contributed little to understanding the monument and so have not been included in this report. The number of anomalies identified within the round were few in comparison to the magnetometer survey; however, this only became apparent after the all the results were completed. Previous work, notably at Padderbury Top, a hilltop enclosure at Menheniot, Cornwall demonstrated the value of resistivity survey which identified several internal features and structures within the inner enclosure which were not recorded by the initial magnetometer survey (Lewis and Frieman 2015b).

Although the increase in data was small, it was important to use this method if only to ensure that as much information was gathered as possible. All future work carried by SeKaS at Talland Barton will employ both magnetometer and targeted resistivity survey to ensure the maximum opportunity for data collection.

5.2. Talland Barton Round HER. 57386

The round was initially identified as cropmarks on aerial photographs. The cropmarks identified visible gaps in the northwest circuit of the enclosure ditches. The survey demonstrated the only gaps within the inner (1) and probably the outer (2) enclosure are located on their eastern side, no other gaps were recorded in the survey. This is probably due to the underlying geology and, in the case of the outer enclosure (2), the presence of the large pit anomaly (17) which truncates this ditch. As noted above, this pit (17) could be either a quarry. A similar anomaly was recorded at Padderbury Top where the outer ditch also had a large pit cut into it (Lewis and Frieman 2014b, 2015b).

Within the round, several potential archaeological anomalies were identified (4, 28, 29 & 31). The survival of these features is not surprising, as recent work undertaken at Bake Rings, Pelynt (Lewis and Frieman 2014a, 2015a) and Padderbury Top, Menheniot, (Lewis and Frieman 2014b, 2015b), Hall Rings, Pelynt (Lewis and Frieman 2016a) have demonstrated similar results. At these sites, internal structures including pits, roundhouses (Bake Rings, Padderbury Top) and rectangular structures (Hall Rings) were recorded. Although no obvious structures were recorded at Talland Barton, several anomalies were identified which might possibly represent post-built structures. If these are post-built buildings, then this contrasts with other presumably contemporary sites surveyed in the region whose structures survive as round gullies or rectangular ditches.

The survey also recorded several linear anomalies (3, 38, 39 & 40) within the inner enclosure (1). Three was recorded during the magnetometer survey and 39, 40 and 41 during the resistivity survey. The location of 3 is notable and there might be several possibilities for its position. First, it might be the remains of an even earlier enclosure ditch, one which was either not finished or whose continuation is not visible (being perhaps a palisade). Second, it could have acted as a wind break, since the winds are predominately from the southwest. If this is the case, then it might have been constructed as a temporary measure before the inner and outer enclosures were built. Finally, it might be associated with an anomaly within the inner enclosure which is only partially or not visible.
Thirty-nine and 4 are on the same alignment and almost in the same place. These anomalies might represent the remains of an earlier ditch which included both 3 and 39. The remaining linear features 38 and 40 might also be the remains of structures or could possibly represent geological disturbances from when the inner ring was cut (M. Wright pers comm).

Rectangular Enclosure HER.57387

The cropmarks extrapolated from the aerial photos were interpreted as showing a rectangular enclosure. In contrast, the survey recorded very little evidence for any enclosure at that location. Only a single linear anomaly (25) was recorded and this has been interpreted as a field boundary. It is possible the underlying geology is masking part of the rectangular enclosure; however, it is unlikely that the underlying bedrock would completely mask the extent of such a feature, based on the clarity of the magnetometry survey in the near vicinity.

Alternately, and more likely, the recording of the enclosure was an over-interpretation of the aerial photograph. Furthermore, the location where the enclosure was identified is on a very steep gradient. In this situation, it would not have been easy to construct an enclosure, and we question the utility or functionality of an enclosed structure with this sort of aspect. Therefore, the evidence from the geophysical survey indicates there is no rectangular enclosure present in this field.

Undated Enclosure and Pits HER.57388

The survey identified two linear anomalies (26 & 27) which appear to correspond with the cropmark interpretation. However, these anomalies do not form a recognisable enclosure but appear to cross one another and are truncated by several pits (34). Like 25, the linear anomalies are located on very steep ground and it is difficult to imagine why someone would want to construct an enclosure on such a sharp gradient. These anomalies might signify previous boundary limits of this field which over time has become extended, or they might represent the remains of old paths along the cliff. The pits (34) are various sizes and might represent evidence of quarrying and/or the deposition of rubbish.

Cropmarks and Field Boundaries

The survey identified several field boundaries (9, 11, 12, 13, 15, 16, 19, 21, 22, 23, 24 & 35) and taken together they do not appear to form a coherent field system. However, when they are located within the present field system some of the cropmarks and the linear anomalies appear to be associated with current alignment of hedges. Figure 9 (below) presents a possible interpretation, the yellow lines represent a combination of the upstanding hedges, cropmarks and linear anomalies. Anomaly 15 appears to be the continuation of an upstanding hedge. This hedge was present on the 1st Edition Ordnance Survey (1882) but has since been removed. Anomalies 23 and 24 appear to be a previous continuation of an upstanding hedge, whilst immediately to the south of this feature was recorded another cropmark (yellow dashed) which also extends from the hedge. This cropmark was not recorded on the geophysical survey; however, perhaps the survey needs to be continued further east to find it. Either this cropmark or 23 represents the original line of the hedge with a later realignment. In any event these features appear to be associated with the present upstanding field system.

Furthermore, it is possible 12, 13 and 16 (Figure 4) represent the original western edge of this field and it is notable the southern terminus of 19, as determined by the cropmark, is in line with the alignment of a southern east-west aligned upstanding hedge (yellow). Sixteen is notable as it is initially runs parallel with 12 and is aligned with both 12 and 19. This suggests that it is a local reworking of this alignment which is intended to maintain and reinforce this boundary. Sixteen turns northwest and is truncated by the modern water pipe and continues as 22 (Figure. 4). Notably, the terminus of 22 is aligned with the western terminus of 12. This further suggests that both features
were contemporary. Although 11 does not extend as far into the survey area as 12/13, its alignment suggests it might also be part of the same field system.

The purple line represents a north-south aligned upstanding field boundary, for which we have a known construction date, as it was constructed by French prisoners during the Napoleonic Wars (J. Hutchings pers comm).

Anomalies 20 and 21 do not at present appear to be associated with the other field boundaries. Only a proportion of 20 has been surveyed and until further surveying is undertaken not much more can be written about it. The angled linear anomaly 21, might possibly be related to the round, structure 5 (see below) and or 12. Its NE-SW ditch appears to be aligned with the southern side of the round and its location close to the entrance indicates a possible association. It is also located very close to structure 5 and might be part of the anomalies associated with this feature. Finally, 21 might relate to 12 although it is not aligned with this boundary it might represent a later attempt to construct a small enclosure in which to keep livestock.

Where the ditches terminate appears, with the present amount of data, to be quite random; however there might once have been woodland present in this area which would have dictated where the field boundaries finished. Or perhaps there were hedges which delimited the extent of the fields, and

Figure 9. Interpretation of the cropmarks and field boundaries.
ditches were dug alongside parts of these hedges. Then, once the hedges were removed, we would be left with the ditches which are only present part of the field system.

Structure 5 & Anomalies 6, 7 & 8

Structure 5 is located c.10m southeast of the round. It is almost square, although its east side is slightly longer than its west side. It has a single north facing opening and appears to have at least one internal feature 6 which is located to the west side of the opening. Along the internal southern edge of the structure, following the southern ditch, a lighter linear negative anomaly was recorded which might be the remains of a bank. The structure is aligned with and appears respect both 12 and 16. This indicates it might possibly be contemporary, or if it does post-date the construction of the field boundaries these were upstanding when it was built.

Immediately to the south is a short linear north-south aligned linear anomaly (7) and three small pits (8). The linear anomaly 7 is close to and aligned with both the eastern side of 5 and the north-south field boundary 12/16. For these reasons, it is considered to be contemporary or have been dug when these features were upstanding. Although, the three pits are here considered together, it is not certain they are contemporary. The most easterly pit appears to either be truncated or to truncate 7 and the other two pits might be associated with 5; however, without further investigation, it is impossible to establish the chronological relationships.

Pit Groups 14, 17, 18, 32, 33, & 34

Six pit groups have been identified. Fourteen, 18, 33 and 34 are very large pits that possibly represent quarry pits. If this is correct, then 14 and 33 might be related to the construction of the nearby medieval church. This might be true for the rest of the large pits, but these are further away from the church and might have been exploited to recover stone for the field boundaries.

Talland Barton in the Landscape

Talland Barton round is located on a southwest facing slope, to east of Talland Bay and commands extensive views over the sea. The sea would have been exploited and accessed for many reasons, such as trade, war, fishing and rituals (Wilkes 2007: 121); and the inhabitants of Talland Barton round seem likely to have been very aware of and to value the sea adjacent to their settlement. At present, no coastal rounds in Cornwall have been excavated, so our knowledge of maritime activities, such as fishing or local and international trade, is limited.

However, several artefacts found within the immediate area suggest local engagement in extensive trade networks during both the Bronze and Iron Ages, such as the famous Aegean Bronze Age sword fragment allegedly from Pelynt, though no other details regarding its find location are known (Branigan 1970; Childe 1951; Macnamara 1973). Additional significant finds include multiple copper or copper-alloy ingots from the sea near Looe and Looe Island (St. George’s Island) (Beagrie 1985; Todd 2008), and fragments of B1 amphora from the Aegean recovered from Looe Island itself (Todd 1983: 122). Further afield, a possible Irish variant of a Grundlingen type Bronze Age Rapier was found just off Sennen Cove (Needham 2013: 115) and two groups of Bronze Age objects including palstave axes, swords, tin ingots and Mediterranean bronzes were recovered off Salcombe Bay, Devon (Needham et al 2013).

Although no coastal rounds in Cornwall have been excavated, a potentially similar—or at least contemporary—site has been investigated at Mount Folly, South Hams, Devon. At Mount Folly, three enclosures are being excavated in an ongoing community project, here they have found many
features, including postholes, pits and material from the Iron Age through the Romano-British period. A large assemblage of pottery was recovered, and this comprised mainly of local wares but also included pottery from other parts of Britain and the continent (Wilkes 2008: 103).

It is tempting to suggest a similar assemblage might be found at Talland Barton; however, Talland Beach, whilst not presenting the same level of shelter as Looe estuary, might have functioned as a ‘landing place’. Bradley et al (2016: 126) describe ‘landing places’ as ephemeral locations, as opposed to ‘havens’ which offered more sheltered moorings. One could imagine casual trade being conducted at Talland Bay; and, if so, the inhabitants of the settlement at Talland Barton round may have played a key role in the distribution of this material into more inland areas. It is notable that, on the mainland at Looe, there is no recorded enclosure where the town now stands. There are several possible barrows near the river mouth; and further up the river, just beyond where it divides, there are two possible enclosures at Trenant and Deeppark Wood. Nevertheless, no sites are known either around the present harbour or immediately above on the high ground. A possible Romano-British enclosure was found at Looe Island (Wessex Archaeology 2009: 22), and it might be this site which functioned as a trading venue, positioned to take advantage of the sheltered bay and estuary mouth. Indeed, Looe Island has been identified as a possible candidate for island of ‘Ictus’ mentioned in Pytheas Greek, although the most likely candidate is St Michael’s Mount (Cunliffe 2002). Thus, in the immediate area of Looe estuary, Talland Barton remains the only round on the mainland visible from the sea, and it is difficult to imagine that, with this positioning, it did not take part or facilitate local trade within the area.

The extensive view out to sea contrasts with the limited view inland; and, in this respect, Talland Barton has much in common with other similar sites in the area. A curious characteristic of rounds and similar enclosures in this part of Cornwall lies in the contrast between the large quantity labour and time which went into constructing these sites and their apparently hidden or tucked away locations. Talland Barton is located on a hillside that slopes down towards the English Channel, meaning that, if it were approached from land, the settlement itself would be largely concealed. A similar aspect has been noted for the nearby site at Hall Rings, a site which has extensive earthworks but is located out of the way on a hillside sloping down into a valley (Lewis and Frieman forthcoming).

The entrance to Talland Barton appears to be on the east side and this easterly aspect is shared by other similar sites. Bake Rings, Hall Rings and Padderbury Top all have easterly entrances, a shared outlook which may be significant. Several studies have emphasised the cosmological principles in the siting of enclosure and roundhouse entrances (see Hill 1996; Oswald 1997; Parker Pearson 1996). There is general agreement that an easterly aspect was important during the Later Iron Age and Roman period (Pope 2007: 224). In the southeast of Cornwall, an easterly slope aspect is preferred, and this might be a reflection of cosmological principles, which may have specified the ‘required’ orientation for Iron Age entrances (Fitzpatrick 1997: 79). It is perhaps notable that Bury Down, another recently surveyed enclosure, is the only one of the mentioned sites with no evidence for settlement activity and does not have an easterly aspect, but instead faces south-west towards St. Austell (Lewis et al, forthcoming).

Hendersick Barrow HER. 57390

The barrow at Hendersick is represented by a circular ditch (36) inside of which is a negative feature which might represent the remains of a bank. Within this circuit, two dark anomalies (35) were recovered, one of which is central and the other of which is located just to the south. The central anomaly could be a cist or a pit and the other could be a later deposition. Similar anomalies have been found nearby within barrows at Ashen Cross, (Pelynt) (Lewis and Frieman forthcoming) and Duloe Stone Circle (Duloe) (Lewis and Frieman 2017). The geophysical evidence from both sites also displays evidence of multiple deposits or pit anomalies within the barrow and in the case of Duloe Stone Circle an urn was uncovered during the removal of a hedge (Borlase 1872).
The barrow is situated on a gentle east facing slope and has extensive view across the sea and towards Looe Island. It is the only barrow between Looe and Talland and only one of two between Looe and Polperro. The other barrow is at Brent and, like the Hendersick Barrow, this one was recorded as a cropmark about 20m in diameter.

Between Looe and Fowey there appear to be only five possible locations where barrow construction may have taken place. These are the two isolated barrows at Hendersick and Brent; two possible isolated barrows at Pencarrow Head (HER. 178103) and at Polruan (HER.178110), although these may be natural outcrops; and three mounds recorded on aerial photos at Triggabrowne that have been interpreted as either barrows or related to the post-medieval settlement nearby at Lower Trigabrown (HER. 37175.30).

6.0 Conclusion

The objectives of this season’s fieldwork in southeast Cornwall were to undertake complete magnetic and targeted resistivity surveys of the sites and to determine the extent and composition of the subsurface features. Both surveys revealed considerable number of potential archaeological anomalies which were not previously known, including a completely unknown structure (5). Our interpretation of the identified features suggests that the round and barrow predate the field boundaries recorded as cropmarks. Furthermore, several of the cropmarks and anomalies relate to upstanding field boundaries, suggesting their origin in the medieval or post-medieval period.

The survey identified several internal features within both the round and structure 5. These probably indicate structural evidence of inhabitation over quite a long period. Finally, the results of the surveys were compared with similar sites in the local area in, and demonstrate a number of shared architectural practices, which may relate to local social and political structures as well as to cosmological practices.

In summary, the 2017 surveys have found a bivallate circular round which has later been partially incorporated into and truncated by later field boundaries. These field boundaries appear to be part of the present upstanding field system. In addition, a number of large pits and pit clusters of uncertain date have been identified, and a previously unknown rectangular structure has also been found. Finally, very little evidence was determined to be present for the existence of a rectangular enclosure which had been thought to be visible in the aerial photographs, but which instead seems more likely to be a complex of several field boundaries and not an intentional enclosure.

Future work at Talland Barton round must include extending the geophysical survey to cover the rest of the field in which it is located. This will establish whether structure 5 is isolated or part of group of structures and allow the full extent of the subsurface field boundaries and their relationship to the present day upstanding field boundaries to be delineated.

Geophysical survey, whilst giving us exciting insight into the layout of this site, can offer no information regarding its chronology, duration of use or character of occupation. Thus, a targeted excavation of the site is recommended in order explore the chronological and functional relationships between the various subsurface features and to recover artefacts and environmental evidence so that Talland Barton round can be placed within its chronological, social and regional contexts.
7.0 Acknowledgements

The authors would like to thank the following people for their help and comments:

Mr James Parry, Mr Kyle Beavorstock, Mr Pete Nicholas, Mr Malcolm Wright, Mr John Hutchings, Mr James Parry, Dr Linda Fibiger, Oscar Zimmerman, Philip Hutchings, Anna Ginger, Tom Stuart, Ben Tebbit, Freya Fibiger-Lewis,

The survey was funded by Australian Research Council DECRA DE170100464.
8.0 References

Heritage Gateway. 2017. Cornwall and Isles of Scilly Historic Environmental Record. [Online] available at: https://www.google.co.uk/search?q=heritage+gateway&rlz=1C1AVNE_enGB716GB716&oq=heritage+gateway&aqs=chrome...69i57j69i60l2j0l3.8093j0j1&sourceid=chrome&ie=UTF-8

Wessex Archaeology. 2009. Looe, Cornwall, Archaeological Evaluation and Assessment of Results. Salisbury, Rpt 68734.01.
